1.	Whi	Which of the following is unit of Internal Energy?					
	(A)	Joule (J)	(B) Joule/Sec				
	(C)	Joule.Sec	(D) Watt/Sec				
	(E)	Answer not known					
2.	Whi	ch of the following statemer	nt is correct about throttling process?				
	(i)	9 1	urs when fluid flow through a sed value without change in kinetic				
	(ii)	The primary result of the process is pressure drop of the fluid.					
	(iii)	Throttling process produchanges.	ices shaft work and enthalpy also				
	(A)	(i) only	(B) (iii) only				
	(C)	(i) and (ii) only	(D) (ii) and (iii) only				
	(E)	Answer not known					
3.		thermodynamic consister be carried out for vapor liqu	ncy test with experimental values aid equilibrium using				
	(A)	Margule's equation	(B) Gibbs Duhem equation				
	(C)	Van Laar equation	(D) Wilson equation				
	(E)	Answer not known					

4. The residual Gibb's energy G_i^R is related to fugacity coefficient ϕi of a species i at temperature T by

(A)
$$G_i^R = RT\phi i$$

(B)
$$G_i^R = RT/\phi i$$

(C)
$$G_i^R = RT/n\phi i$$

(D)
$$G_i^R = R/n\phi i$$

(E) Answer not known

5. The ratio of ideal work to actual work of a process is known as

(A) Entropy

- (B) Enthalpy
- (C) Thermodynamic efficiency
- (D) Carnot efficiency

(E) Answer not known

6. The enthalpy H is related to internal energy U for a constant pressure process by

(A)
$$H = U - PV$$

(B)
$$H = PV - U$$

(C)
$$H = U + PV$$

(D)
$$H = U + P/V$$

(E) Answer not known

7. Match the following thermodynamic process:

(1) Isothermal processes – constant pressure

(2) Adiabatic processes – constant Temperature

(3) Isobaric processes – constant heat

(4) Isochoric process – constant volume

(A) 2 3 1 4

(B) 2 3 4 1

(C) 3 2 1 4

(D) 3 2 4 1

(E) Answer not known

- 8. Which of the following statements are correct about state and path functions?
 - (i) Work is a state function and does not depend on path.
 - (ii) Internal energy is a state function and does not depend on path.
 - (iii) Heat is a path function as it depends on path.
 - (A) (i) only

(B) (ii) only

(C) (i) and (iii) only

- (D) (ii) and (iii) only
- (E) Answer not known
- 9. Which of the following is true about le chatelier principle?
 - (i) When a stress is applied on a system in equilibrium, system tends to adjust itself so as to reduce the stress.
 - (ii) Change in concentration affect equilibrium.
 - (iii) Change in pressure and temperature does not affect equilibrium.
 - (A) (i) only

(B) (i) and (iii) only

(C) (i) and (ii) only

- (D) (ii) and (iii) only
- (E) Answer not known
- 10. Which of the following is correct representation of Dalton's law?

5

- (A) $P_{\text{Total}} = P_1 + P_2 + P_3....$
- (B) $V_{Total} = V_1 + V_2 + V_3 \dots$
- (C) $T_{Total} = T_1 + T_2 + T_3....$
- (D) $R_{Total} = R_1 + R_2 + R_3 \dots$
- (E) Answer not known

11.	Which of the following statement is true about extensive properties?						
	(i)	It depend on the quantity of	f matter present.				
	(ii)	It does not depend on the q	uantity of matter present.				
	(iii)	Examples of Extensive entropy and Gibbs' tree ene		enthalpy,			
	(A)	(i) only	(B) (i) and (iii) only				
	(C)	(i) and (ii) only	(D) (ii) and (iii) only				
	(E)	Answer not known					
12.		ystem that can transfer bot rounding is called	h energy and matter to and	l from its			
	(A)	an isolated system	(B) a closed system				
	(C)	an open system	(D) a heterogeneous sy	stem			
	(E)	Answer not known					
13.		ich of the following state: cture?	ments are correct about i	ideal gas			
	(i) Volume% = mol% = Pressure% for ideal gas mixture						
	(ii) Ideal gas mixture does not obey equation of state PV = nRT						
	(iii)	Total pressure of gas is eq components	ual to sum of the partial pr	essure of			
	(A)	(i) only	(B) (iii) only				
	(C)	(ii) and (iii) only	(D) (i) and (iii) only				
	(E)	Answer not known					

14.	Which of the following is atomic mass of oxygen?				
	(A)	8	(B) 16		
	(C)	18	(D) 20		
	(E)	Answer not known			
15.	The	number of moles of solute per l	liter of solution is called as		
	(A)	Molarity	(B) Molality		
	(C)	Normality	(D) Mole fraction		
	(E)	Answer not known			
16.	The capacity of any rotary drum filters depends strongly on the characteristics of the				
	(A)	Submergence ratio	(B) Filter area		
	(C)	Pressure	(D) Feed slurry		
	(E)	Answer not known			
17.	In a discontinuous filters, name the type of filters where better washing of the cake is needed.				
	(A)	Plate and frame filter press	(B) Belt filters		
	(C)	Vacuum filters	(D) Leaf filters		
	(E)	Answer not known			
18.	Name the type of filters, the feed suspension flows under pressur at a fairly high velocity across the filter medium.				
	(A)	Cake filters	(B) Clarifying filters		
	(C)	Cross flow filters	(D) Cyclone separator		
	(E)	Answer not known			

19.	To i	ncrease the filtration rate, add	ling a some compound it is called			
	(A)	Filter press	(B) Cake filter			
	(C)	Filter aid	(D) Septum			
	(E)	Answer not known				
20.		Heavy duty two arm mixer in which agitators are in the interrupted spiral is				
	(A)	Pony mixer	(B) Beater mixer			
	(C)	Banbury mixer	(D) Ribbon mixer			
	(E)	Answer not known				
21.		l designed turbine impeller sys o about	tems can be used with viscosities			
	(A)	10 pa.s	(B) 20 pa.s			
	(C)	40 pa.s	(D) 50 pa.s			
	(E)	Answer not known				
22.	A pr	ropeller with a pitch of 1.0 is sa	id to have			
	(A)	Square pitch	(B) Rectangular pitch			
	(C)	Triangular pitch	(D) Parabolic pitch			
	(E)	Answer not known	- · · · -			

23.	_	ellers agitators that generate impeller shaft are called		-		
	(A)	axial-flow impellers	(B)	radial-flow impellers		
	(C)	circular flow impellers	(D)	Disc flow impellers		
	(E)	Answer not known				
24.	chai	nydrocyclone most of the liquid mber and leaves through the wn as a				
	(A)	Overflow	(B)	Feed		
	(C)	Underflow	(D)	Vortex finder		
	(E)	Answer not known				
25.		For a Cyclone separator 1 ft in diameter with tangential velocity 50 ft/s near the wall. Find the separation factor				
	(A)	155	(B)	255		
	(C)	55	(D)	355		
	(E)	Answer not known				
26.	Mec	hanically agitated thickeners t	he ra	ange of depth should be		
	(A)	2 to 6 ft	(B)	4 to 8 ft		
	(C)	6 to 10 ft	(D)	8 to 12 ft		
	(E)	Answer not known				

27.	Asse	ertion [A] :	In Constant is held const	nt-pressure filtration, the pressure of stant.	drops	
	Reason [R]:			Due to constant pressure drop, the rate of filtration should be constant.		
	(A)	Both [A]	and [R] are to	true [R] is not correct explanation of	[A]	
	(B)	Both [A]	and [R] are F	False		
	(C)	[A] is Tru	ue, [R] is Fals	se		
	(D)	Both [A]	and [R] are to	true, [R] is correct explanation of [A]		
	(E)					
28.				filter aid is by other nto slurry before filtration.	than	
	(A)	Pre coat		(B) Filter medium		
	(C)	Post coat	;	(D) Pre filtration		
	(E)	Answer r	not known			
29.	Which of the following statement are true about filter media?					
	(i)	It must no	ot plug or blir	ind.		
	(ii)	It must no	ot be expensi	ive.		
	(iii)	It must no	ot relation th	he solids to be filtered.		
	(A)	(i) only		(B) (i) and (ii) only		
	(C)	(ii) and (i	iii) only	(D) (i) and (iii) only		
	(E)	Answer n	not known			

30.	Top-suspended centrifuges are extensively used in				
	(A)	Flour sep	paration	(B) Sugar refining	
	(C)	Pharma	industry	(D) Petroleum indust	ry
	(E)	Answer r	not known		
31.	Smo	oth-roll cr	ushers produci	ng a product in the range of	
	(A)	1 to 12 m	ım	(B) 12 to 75 mm	
	(C)	150 to 25	60 mm	(D) 75 to 150 mm	
	(E)	Answer r	not known		
32.	Asse	ertion [A] :		he heavy work of breaking la ials in to small lumps.	arge pieces
	Reas	son [R] :	Secondary cr perhaps 6 mm	ushers reduces the lumps in size.	to particle
	(A)	[A] is tru	e but [R] is fals	e	
	(B)	Both [A]	and [R] is true,	and [R] is correct explanation	on of [A]
	(C)	Both [A] and [B] is false			
	(D)	Both [A] of [A]	and [B] is tru	ie, and [R] is not correct ex	xplanation
	(E)	Answer r	not known		

33. Assertion [A]: Crushing laws proposed many years ago by Rittinger and Kick. A more realistic way of estimating the power Reason [R]: required for crushing was proposed by Bond. (A) [A] is true but [R] False (B) Both [A] and [R] are true, [R] is the correct explanation of [A] (C) [A] is False, [R] is true Both [A] and [R] are true, but [R] is not the correct (D) explanation of [A] (E) Answer not known 34. Assertion [A]: For homogenous mass the ratio of the normal to the applied pressure constant 'K' which ischaracteristic of the material. The value of 'K' between 0.35 and 0.6 for cohesive Reason [R]: solids. (B) [A] and [R] is true (A) [A] is true, [R] is false [A] and [R] is False (C) (D) [A] is False, [R] is true Answer not known (E) 35. _ are used to measure the size of particles in the size range between about 3 and 0.0015 m. (A) Standard screens (B) Impactors

Grinders

Answer not known

(C)

(E)

(D) Crushers

(A)	4 mm		(B)	8 mm
(C)	12 mm		(D)	16 mm
(E)	Answer no	ot known		
Asse	ertion [A]:			-
Reas	son [R] :	The operating specritical speed.	ed of	f the ball must be less than
(A)	Both [A] a	nd [R] are true	(B)	[A] is false [R] is true
(C)	[A] is true	[R] is false	(D)	Both [A] and [R] are false
(E)	Answer no	ot known		
The	capacity	of a screen is cor	ntrol	led simply by varying the
(A)	Rate of pr	oduct out	(B)	Rate of feed in
(C)	Size of the	e feed	(D)	Shape of the feed
(E)	Answer no	ot known		
Scre	ening is	a method of sep	arati	ing particles according to
(A)	Shape alo	ne	(B)	Size alone
(C)	Density al	lone	(D)	Viscosity alone
(0)	U			· ·
(E)	Answer no	ot known		v
	(C) (E) Asserting (A) (C) (E) The (A) (C) (E) Scree (A)	(C) 12 mm (E) Answer not Assertion [A]: Reason [R]: (A) Both [A] at (C) [A] is true (E) Answer not (E) Answer	(C) 12 mm (E) Answer not known Assertion [A]: In the ball mill toccurs is called the Reason [R]: The operating specritical speed. (A) Both [A] and [R] are true (C) [A] is true [R] is false (E) Answer not known The capacity of a screen is cormoderate (C) Size of the feed (E) Answer not known Screening is a method of sepecial content (C) Size of the feed (E) Answer not known	(C) 12 mm (D) (E) Answer not known Assertion [A]: In the ball mill the soccurs is called the critical speed of critical speed. (A) Both [A] and [R] are true (B) (C) [A] is true [R] is false (D) (E) Answer not known The capacity of a screen is controlly (C) Size of the feed (D) (E) Answer not known Screening is a method of separate (A) Shape alone (B)

Fluid energy mills can accept feed particles as large as

36.

40. Choose the right answer among type.

Which of the following characterization are belongs to individual solid particles?

- 1. Size
- 2. Shape
- 3. Density
- 4. Viscosity
- (A) 1 only

(B) 1 and 2 only

(C) 1, 2 and 3 only

- (D) 1, 2, 3 and 4
- (E) Answer not known
- 41. Which of the following is true about characteristics of a good fuel?
 - (i) Low cost
 - (ii) Easy to transport
 - (iii) High moisture content
 - (A) (i) only

(B) (i) and (iii) only

(C) (i) and (ii) only

- (D) (ii) and (iii) only
- (E) Answer not known

42.	Which of the following statements are true about antiknocking properties?					
	(i)	Pb(C2Hs) ₄ is antiknocking ag	ent.			
	(ii)	TEL is short term of Pb(C2Hs) ₄				
	(iii)	Lead and lead oxide not contaminate air				
	(iv)	Lead and lead oxide not depos	Lead and lead oxide not deposite on spark plug.			
	(A)	(i) only	(B) (i) and (iii) only			
	(C)	(i) and (ii) only	(D) (ii) and (iii) only			
	(E)	Answer not known				
43.	Which of the following is primary fuel?					
	(A)	Coke	(B) LPG			
	(C)	Wood	(D) Water gas			
	(E)	Answer not known				
44.		ch of the following properties r hich the oil lubricant gives off e	related to the lowest temperature enough vapours?			
	(A)	Flash point	(B) Fire point			
	(C)	Cloud point	(D) Pour point			
	(E)	Answer not known				

45.		ch of the following statements od fuel?	are true about characteristics of				
	(i)	A fuel should possess high calorific value					
	(ii)	A fuel should possess low ign	ition temperature				
	(iii)	A fuel should have high mois	ture content				
	(A)	(i) only	(B) (i) and (iii) only				
	(C)	(i) and (ii) only	(D) (ii) and (iii) only				
	(E)	Answer not known					
46.	Asse	$\operatorname{Prtion}\left[\mathrm{Al} \right] \;\;:\;\;\; \operatorname{LPG}-\operatorname{Liquefie}$	d Petroleum Gas.				
	Reas	son [R] : It is obtained cracking of hear	as a by-product, during the vy oils.				
	(A)	[A] is true but [R] is false					
	(B)	Both [A] and [R] are true and [R] is the correct explanation					
	(C)	[A] is false [R] is true					
	(D)	Both [A] and [R] are true, but [R] is not correct explanation of [A] is correct					
	(E)	Answer not known					
47.	Whi	Which of the following is true about characteristics of a good fuel?					
	(i)	Should burn without much sr	noke.				
	(ii)	Combustion should be easily controllable					
	(iii)	Low calorific value.					
	(A)	(i) only	(B) (i) and (iii) only				
	(C)	(i) and (ii) only	(D) (ii) and (iii) only				
	(E)	Answer not known					

48.	In ca	In case of liquids, Ohm's law is					
	(A)	Directly related to potential difference					
	(B)	Partially obeyed					
	(C)	Fully obeyed					
	(D)	No relation between current a	and p	otential difference			
	(E)	Answer not known					
49.	The	The armature of a dc machine is laminated to reduce					
	(A)	Copper losses	(B)	Hysterisis loss			
	(C)	Eddy Current Loss		Friction and windage loss			
	(E)	Answer not known					
50.		The nature of emf generated in the armature winding of a dc generator is					
	(A)	Alternating	(B)	Constant			
	(C)	Pulsating	(D)	Of triangular form			
	(E)	Answer not known					
51.	For	a dc shunt motor, the armature	e torc	que is			
	(A)	Directly proportional to armature current					
	(B)	Inversely proportional to armature current					
	(C)	Directly proportional to squar	e of	armature current			
	(D)	Inversely proportional to square of armature current					

Answer not known

(E)

52.	The direction of rotation of dc shunt motor can be reversed by interchanging						
	(A)	(A) The supply terminals					
	(B)	The armature terminals onl	у				
	(C)	The field terminals only					
	(D)	Either armature or field terr	minal				
	(E)	Answer not known					
53.	The	The rating of a transformer is expressed in					
	(A)	KVA	(B) KVAR				
	(C)	KW	(D) KV				
	(E)	Answer not known					
54.	One ton of refrigeration is equivalent to the refrigeration rate of						
	(A)	12000 KJ/h in SI units	(B) 12660 BTU/hr				
	(C)	12660 KJ/h in SI units	(D) 12666 KJ/h in SI units				
	(E)	Answer not known					
55.	Refrigeration is used to remove heat of chemical reactions and to liquify process gases for gas separation by						
	(A)	Evaporation and condensation					
	(B)	Distillation and condensation					
	(C)	Compression and evaporation	on				
	(D)	Compression and condensat	ion				
	(E)	E) Answer not known					

56.	Desirable characteristics of a refrigerant should be										
	(A)	Non-toxic, Non-corrosive, Non-flammable and chemical stable									
	(B)	(B) Non-toxic, corrosive, flammable and unstable									
	(C)	(C) Non-toxic, corrosive, flammable and low cost									
	(D)										
	(E)	Answer not	known								
57.		at type of real	frigerant is used	d for freezing of i	ice cream and ice						
	(A)	Methane		(B) Ammonia							
	(C)	C) Freon-12 (D) Chlorofluorocarbon									
	(E)	(E) Answer not known									
58.	When the volume rate of the refrigerant is large in a vapour compression refrigeration cycle,										
	(A) Rotary compressors are used										
	(B)	•									
	(C)	Centrifugal compressors are used									
	(D)	Isothermal compressors are used									
	(E)	Answer not	known								
59.	Soli	d carbon diox	tide or dry ice is	known as							
	(A)	Medium of	compression	(B) Medium or	f refrigeration						
	(C)	Cooling sub	stance	(D) Easily und	dergo sublimation						
	(E)	Answer not known									

- 60. The symbol τ (tow) represents
 - (A) Tensile stress

(B) Compressive stress

(C) Shear stress

- (D) Volumetric stress
- (E) Answer not known
- 61. Mathematical expression for compressive stress is
 - (A) Resisting force / Area
 - (B) Area / Resisting force
 - (C) Decrease in length / Original length
 - (D) Original length / Decrease in length
 - (E) Answer not known
- 62. Identify the true and false statements using the codes:
 - (i) Tensile stress acts normal to the area and it pulls on the area.
 - (ii) Normal stress is the stress which acts in a direction parallel to the area.
 - (iii) The strain produced by shear stress is called shear strain
 - (iv) Pica Newton = 10^{-9} Newton
 - (A) (i) False; (ii) True; (iii) False; (iv) True
 - (B) (i) True; (ii) False; (iii) True; (iv) False
 - (C) (i) True; (ii) True; (iii) False; (iv) False
 - (D) (i) False; (ii) False; (iii) True; (iv) True
 - (E) Answer not known

- 63. Stain is defined as
 - (A) Rate of change with temperature
 - (B) Dimensional change with load
 - (C) Ratio of change of dimension of a body to the original dimension
 - (D) Rate of change with area
 - (E) Answer not known
- 64. The unit mega Newton is equal to
 - (A) 10^{-6} N

(B) 10^6 N

(C) 10^9 N

- (D) 10^{-9} N
- (E) Answer not known
- 65. Mathematical expression for Newton is
 - (A) $N = kg \times mm/s^2$

(B) $N = kg \times m/n$

(C) $N = kg \times m/s^2$

- (D) $N = kg \times m/s$
- (E) Answer not known
- 66. The controller that use air control medium to provide an output signal is
 - (A) Hydraulic controller
- (B) Pneumatic controller

(C) Microcontroller

- (D) Electronic controller
- (E) Answer not known

- 67. Select the static characteristics of instruments from options given
 - (A) Fidelity

(B) Sensitivity

(C) Lag

- (D) Speed of response
- (E) Answer not known
- 68. The transfer function of PI controller is given by

(A)
$$G(s) = Kc \left[1 + \frac{1}{\tau_I s} \right]$$

(B)
$$G(s) = K_c \tau_I s$$

(C)
$$G(s) = \frac{1}{\tau_s + 1}$$

(D)
$$G(s) = Kc[1 + \tau_I s]$$

- (E) Answer not known
- 69. The open loop transfer function of a control system is
 - (A) The product of individual transfer function in control loop
 - (B) Product of forward path transfer function
 - (C) Forward path transfer function/feedback path transfer function
 - (D) Sum of the individual transfer functions in the control loop
 - (E) Answer not known

70.	Match	Column I	with	Column	II
-----	-------	----------	------	--------	----

Column I

Column II

- (a) Temperature
- Orifice meter 1.
- (b) Pressure
- Thermo couple 2.

(c) Flow

3. Bubbles system

(d) Level

- Bourdon gauge 4.
- (a) (b) (c) (d)
- (A) 1 2 3 4
- (B) 4 3 2 1
- (C) 2 1 4 3
- 3 (D) 2 4 1
- (E) Answer not known
- 71. Which one of the following is unit of pressure?
 - N (A)

(B) N/m

(C) N/m^2

- (D) Kg
- (E) Answer not known
- 72. Centrifugal pumps transport fluids by converting
 - (A) Kinetic energy to hydrodynamic energy
 - (B) Hydrodynamic energy to kinetic energy
 - Mechanical energy to kinetic energy (C)
 - The chemical energy to hydrodynamic energy (D)
 - (E) Answer not known

73.	If th	If the Reynold's number is less than 2100, the flow in pipe							
	(A)	Laminar	(B)	Turbulent					
	(C)	Transition	` ′	None of these					
	(E)	Answer not known	, ,						
74.	Piez	ometer measures	pr	ressure only.					
	(A)	Absolute	(B)	Gauge					
	(C)	Atmospheric	(D)	Absolute and Atmospheric					
	(E)	Answer not known							
75.		ch of these valve not recor ally left fully open or closed?	nmend	ed for controlling flow and					
	(A)	Butterfly valve	(B)	Check valve					
	(C)	Gate valve	(D)	Sluice valve					
	(E)	Answer not known							
76.		ne layer in the atmosphe ight and pass through other i							
	(A)	Visible radiation	(B)	UV radiation					
	(C)	IR radiations		Gamma radiations					
	(E)	Answer not known	` '						
77.	Duri in	ing sewage water treatment,	suspe	nded impurities are removed					
	(A)	Biological process	(B)	Settling process					
	(C)	Preliminary process	(D)	Activated sludge process					
	(E)	Answer not known							
		cal Technology/ 24 Engineering							

78.	Ma	tch th	e type	of gase	es wit	th their volume % in the atmosphere :				
	List I List II (a) N_2 1. 20.94									
	(a)	N_2			1.	20.94				
	(b)	${\rm O}_2$			2.	0.93				
	(c)	Ar			3.	78.08				
	(d)	CO_2			4.	0.03				
		(a)	(b)	(c)	(d)					
	(A)	4	2	1	3					
	(B)	1	3	4	2					
	(C)	3	1	2	4					
	(D)	2	4	3	1					
	(E)	Ans	wer n	ot knov	wn					
79.				is the	outer	rigid shut of the earth.				
	(A)	Bios	sphere)		(B) Atmosphere				
	(C)	Hyd	lrosph	ere		(D) Lithosphere				
	(E)									
80.	$\operatorname{Gr}\epsilon$	en pl	ants c	onsum	.e	and provide				
		_	vironn			•				
	(A)	O_2 a	and CO	O_2		(B) CO_2 and O_2				
	(C)	CO	and C	O_2		(D) CO_2 and CO				
	(E)	Ans	wer n	ot knov	wn					

81.	Incr as	easing the carbon dioxide con	ntent in the atmosphere is know				
	(A)	Acid rain	(B) Greenhouse effect				
	(C)	Indoor pollution	(D) Occupational diseases				
	(E)	Answer not known					
82.		air pollutant which is visible ac se is known as	erosol with the liquid as dispersed				
	(A)	Mist	(B) Smoke				
	(C)	Fog	(D) Fumes				
	(E)	Answer not known					
83.		vatering and disposing of solid ling tanks is known as	ds and liquids collected from the				
	(A)	Filtration	(B) Floculation				
	(C)	Secondary settling	(D) Sludge processing				
	(E)	Answer not known					
84.		is used to report to	the public an overall assessment				
	of a	given day's air quality.					
	(A)	Clean air index	(B) Air quality index				
	(C)	Air quantity measurement	(D) Population of pollutants				
	(E)	Answer not known					

85.	The unit	operation	adopted	to	prevent	pathogen	regrowth	in	the
	water dur	ring the per	riod befor	e it	t is used i	is called			

- (A) Primary disinfection
- (B) Secondary disinfection

(C) Softening

- (D) Primary sedimentation
- (E) Answer not known

86. Match Column I with Column II:

Column I

Column II

- (a) Air purifying respiration
- (i) Can inter mark respirator
- (b) Air supplying respiration
- (ii) SCBA
- (iii) Filter Mark respirator
- (iv) Air Line respirator
- (A) (a) (i) and (ii), (b) (iii) and (iv)
- (B) (a) (i) and (iii), (b) (ii) and (iv)
- (C) (a) (i), (ii) and (iii), (b) (iv)
- (D) (a) (i), (b) (ii), (iii) and (iv)
- (E) Answer not known

87. Safety Harness is associated with which of the given work permit system?

- (A) Hot work permit system
- (B) Cold work permit system
- (C) Limited work permit system
- (D) Height work permit system
- (E) Answer not known

88.	A ho	A hot work permit is required for activities involving							
	(A)	Handling chemicals							
	(B)	Parenting							
	(C)	Welding on cutting operations							
	(D)	Equipment cleaning							
	(E)	Answer not known							
89.	Acti	on of putting off the fire is kn	own as						
	(A)	Fire accident	(B) Fire fighting						
	(C)	Flash point	(D) Hotspot						
	(E)	Answer not known							
90.	_		ovide both workers and emergency dures for handling or working with						
	_		(DDE)						
	(A) (B)								
	(C)	Material Safety Data Sheet (MSDS)							
	(D)	Operational effort							
	(E)	Industrial toxicology Answer not known							
91.		is a central law re	egulating safety, health and welfare						
01.	in fa	actories.	garating sarety, nearth and wenter						
	(A)	The Factories Act 1940	(B) The Factories Act 1945						
	(C)	The Factories Act 1947	(D) The Factories Act 1948						
	(E)								
	. ,								

92.	Cho	Choose the wrong one:							
		accidents can occur by any sed by	unplanned and uncontrolled event						
	(A)	Human error	(B) Situational factors						
	(C)	Environmental factors	(D) Underload						
	(E)	Answer not known							
93.		kers in areas where dB lev sonal protective equipment su	el is high should be provided with ach as						
	(A)	Shock absorber and canal c	aps						
	(B)								
	(C)	Safety goggles and gumboots							
	(D)	Earplug and ear muff							
	(E)	Answer not known							
94.		ntify the industrial disaster value in the option given.	which is occured due to earthquake						
	(A)	The Chernobyl Reactor acc	dent						
	(B)	•							
	(C)	The Fukushima Daiichi Nu	clear Disaster						
	(D)	Campos Basin Oil platform	Accident						
	(E)								
95.		leaked on large	scale from Union Carbide factory,						
	Bho	pal in 1984.	,						
	(A)	Methyl salicylate	(B) Methyl isocyanite						
	(C)	Methyl isocyanate	(D) Ethyl salicylate						
	(E)	Answer not known							
	. ,	90	450 Cl						

96.		sound waves produce sense uency of waves is in the range of		in	human	ears	prov	vided
	(A)	1 to 100 Hz	(B)	100	0 to 30,0	00 Hz		
	(C)	20 to 20,000 Hz	(D)	10,0	000 to 50	,000 H	${ m Iz}$	
	(E)	Answer not known						
97.		fire extinguishing technique gen supply from fire is known a		ch i	nvolves	the re	emov	al of
	(A)	Cooling	(B)	Ver	ntilation			
	(C)	Smothering	(D)	Sta	rvation			
	(E)	Answer not known						
98.		ect the personal protective equi inst falling of person from heigh	_		-	-	_	ction
	(A)	Goggles						
	(B)	Aprons						
	(C)	Self Contained Breathing App	oarat	us (SCBA)			
	(D)	Safety Harness						
	(E)	Answer not known						
99.		ect the portable fire extinguis harge nozzle from the options g			ich cont	ains l	norn	type
	(A)	Foam type fire extinguishers						
	(B)	Dry chemical powder type fire	e exti	ingu	ishers			
	(C)	CO_2 type fire extinguishers						
	(D)	Gas pressure actuated water	type	fire	extingui	shers		

Answer not known

(E)

Mato	ch Column I with Column II :		
	Column I		Column II
(a)	LFL	(i)	Local flammability limit
(b)	UFL	(ii)	Lower Flammability limit
		(iii)	Ultra Flammability limit
		(iv)	Upper Flammability limit
(A)	(a)-(i) and (b)-(iii)	(B)	(a)-(ii) and (b)-(iii)
(C)	(a)-(ii) and (b)-(iv)	(D)	(a)-(i) and (b)-(iv)
(E)	Answer not known		
	_		
(A)	Molecular weight - 60.05	(B)	Melting point - 132.70c
(C)	Fairly soluable in water	(D)	Sweetening Agent
(E)	Answer not known		
	is not the property of Ammo	onia	in the below given choice
(A)	Very soluble in water	(B)	Heavy gas
(C)	Nitrogeneous material	(D)	Used as a fertilizer
(E)	Answer not known		
	(a) (b) (A) (C) (E) Chool Urea (A) (C) (E)	 (a) LFL (b) UFL (A) (a)-(i) and (b)-(iii) (C) (a)-(ii) and (b)-(iv) (E) Answer not known Choose the Wrong Answer. Urea has	Column I (a) LFL (i) (b) UFL (ii) (iii) (A) (a)-(i) and (b)-(iii) (B) (C) (a)-(ii) and (b)-(iv) (D) (E) Answer not known Choose the Wrong Answer. Urea has (A) Molecular weight - 60.05 (B) (C) Fairly soluable in water (D) (E) Answer not known is not the property of Ammonia (A) Very soluble in water (B) (C) Nitrogeneous material (D)

103.	Portl	cland cement is defined as								
	(A)) Finely ground calcium aluminates and silicates								
	(B) Finely ground calcium aluminates									
	(C)	Finely ground calcium silicate	\mathbf{s}							
	(D)	Finely ground Magnesium alu	min	ates						
	(E)	Answer not known								
104.		ose the correct component may eel reinforcing bars in concrete	be a	dded to inhibit the corrosion						
	(A)	Calcium Nitrate	(B)	Calcium Carbonate						
	(C)	Calcium Sulfate	(D)	Calcium oxide						
	(E)	Answer not known								
105.		ose the correct components to soortland cement.	incre	ease the rate of hydration in						
	(A)	Higher C ₃ S and C ₃ A	(B)	Higher C ₂ S and C ₃ A						
	(C)	Higher C ₂ AS and C ₂ S	(D)	Higher C ₂ S and C ₂ A						
	(E)	Answer not known								
106.	High	er percentage of SiO ₂ present i	n	type of glass.						
	(A)	Borosilicate glass	(B)	Alumino silicate glass						
	(C)	Flint glass	(D)	Crookes glass						
	(E)	Answer not known	·							

107.		Choose the wrong answer for the different step in glass manufacturing.											
	(A)	Reaction in the furnace to form glass											
	(B)	Calcinat	tion										
	(C)	Anneali	ng										
	(D)	Finishin	ng										
	(E)	Answer	not knov	wn									
108.	Choo	se the pr	rimary co	onstituent	of m	ost co	ommercial	glass.					
	(A)	Silica (o	r) sand			(B) (Clay						
	(C)	Lime				(D) (Calcium ore)					
	(E)	Answer	not knov	wn									
109.	Phys	sical prop	erties of	Glass is a	an		·						
	(A)	Super co	ooled lig	uid of infi	nite v	viscos	ity						
	(B)	-	-	stalline s			Ü						
	(C)	-	•	t materia									
	(D)	-	ooled foa										
	(E)	-	not knov										
110.	Solut	tion poly	merizati	on has the	e adv	antag	ge of:						
	(A)	Better h	eat cont	rol									
	(B)				ction	al gro	oup reactio	ns					
	(C)			d with sol		_	-						
	(D)		pure po										
	(E)	Answer not known											

111.	catalyst is commonly used in industrial isomerisation					
	processes.					
	(A)	Platinum	(B)	Alumina		
	(C)	Cadmium	(D)	Vanadium peroxide		
	(E)	Answer not known				
112.	Which of the following types of cracking uses a catalyst?					
	(A)	Thermal cracking	(B)	Catalytic cracking		
	(C)	Naphtha cracking	(D)	Catalytic reforming		
	(E)	Answer not known				
113.	Name the main ingredient used in the portland cement.					
	(A)	Lime stone	(B)	Calcium		
	(C)	Sulphur	(D)	Potassium		
	(E)	Answer not known				
114.	process is used in order to concentrate Nitric acid.					
	(A)	Concentration by Ca(NO ₃) ²				
	(B)	Concentration by Ba(NO ₃) ²				
	(C)	Concentration by Mg(NO ₃) ²				
	(D)	Concentration by H ₃ PO ₄				
	(E)	Answer not known				

115.	What is IMI process in the production of phosphoric acid?						
	(A)	Mining process					
	(B)	Wet process					
	(C)	Electric Furnace Process					
	(D)	Carbo-nitric process					
	(E)	Answer not known					
116.	One important source of silica in water is						
	(A)	Activated sludge process outlet					
	(B)	Sand filter					
	(C)	Clarifier outlet					
	(D)	Hydrolysis of magnesium salt					
	(E)	Answer not known					
117.	Select the wrong statements with respect to Hot lime-soda process:						
	(i)	The reaction proceeds slower					
	(ii)	Softening capacity increases					
	(iii)	Coagulants are required					
	(iv)	Produce water quality of residual hardness 50-60 ppm					
	(A)	(ii) and (iv)					
	(B)	(i), (iii) and (iv)					
	(C)	(i), (ii) and (iii)					
	(D)	(ii), (iii) and (iv)					
	(E)	Answer not known					

118.	8. Select the correct statements with respect to oil from the following					
	(i)	They are partially unsaturated				
	(ii)	Melting point is low				
	(ii)	They are liquid at room temperature				
	(iv)	Packing of molecules is comparatively less dense.				
	(A)	(i), (ii), (iii)				
	(B)	(i), (ii), (iii), (iv)				
	(C)	(i), (iii), (iv)				
	(D)	(ii), (iv)				
	(E)	Answer not known				
119.		When oil/fat is treated with hydrogen under high pressure and at $250^{\circ}\mathrm{C}$ gives				
	(A)	Soap + Glycerol				
	(B)	Glycerol + Long-chain alcohol				
	(C)	Glycerol + Saturated Glyceride				
	(D)	Calcium stearate				
	(E)	Answer not known				
120.		x out a statement which is disadvantages of detergents over os from the following.				
	(A)	Synthetic detergents are not fully bio-degradable				
	(B)	Detergents works well even with hard water				

Answer not known

(C)

(D)

(E)

Detergents do not form any precipitate with hard water

Detergents are more easily soluble in water

121.	is not used as an edible oil.						
	(A)	Mineral oil	(B)	Coconut oil			
	(C)	Palm oil	(D)	Peanut oil			
	(E)	Answer not known					
122.	Ten	Temporary hardness can usually be reduced by					
	(A)	Chemical agents	(B)	Heating			
	(C)	Cooling process	(D)	Filtration			
	(E)	Answer not known					
123.		Which of the following statement is correct about the common units used in expressing water analyses,					
	(i)	Parts per million (ppm)					
	(ii)	(ii) Kilogram per litre (kg/l)					
	(iii)	Kg/hr					
	(A)	only (i)	(B)	only (ii)			
	(C)	only (iii)	(D)	none of the above			
	(E)	Answer not known					
124.	The of –	The cold lime-soda process is indeed partially applicable to softening of ——— water.					
	(A)	Municipal water	(B)	Sewage water			
	(C)	Sea water	(D)	Pond water			
	(E)	Answer not known					

195	Cho	ose the correct statement s	hout	tho	ion ovehongo	evetome	
120.	Choose the correct statement about the ion-exchange systems choosen vary according to						
	(i) The volumes and compositions of the raw material						
	(ii) The effluent-quality requirements for different uses						
	(iii) The comparative capital and operating costs						
	(A)	only (i)		only			
	(C)	• , ,	, ,	•), (ii) and (iii)		
	` /	Answer not known	(D)	7111 (1), (II) alla (III)		
	(2)						
126.		the colider since leter decreased account the florid column					
120.	the solids circulate downward around the fluid column, such a bed has found particular use in drying wheat, peas, flax.						
	(A)	Spouted bed dryer	(B)	Tray	dryer		
	(C)	Spray dryer	(D)	Rota	ry dryer		
	(E)	Answer not known					
127.	A revolving cylindrical shell, horizontal or slightly inclined toward the outlet with internal flights to lift the solids is called as						
	(A)	Tray drier	(B)	Rota	ry drier		
	(C)	Flash drier	(D)	Spra	y drier		
	(E)	Answer not known					
128.	The highest practical temperature of drying gas either flue gas (or) air used in spray drier is in the range of						
	(A)	$100 ext{ to } 250^{\circ} ext{C}$	(B)	80 to	$500^{\circ}\mathrm{C}$		
	(C)	$80 \text{ to } 760^{\circ}\text{C}$	(D)	Abov	re 1000°C		
	(E)	Answer not known					

129.	An adsorption isotherm arithmetic graph the concave upward curve described as adsorption is ————.										
	(A)	Strongly Favorable	(B) Linear								
	(C)	Favorable	(D) Unfavorable								
	(E)	Answer not known									
130.		pose the correct statements fr d bed leading process.	om the following about stationary								
	(i)	(i) It is carried out in an extraction battery called Shank's process									
	(ii)	(ii) A series of pressure tanks operated with counter current solvent flow is known as diffusion battery									
	(iii)	It is carried out in Bollmann	extractor or Rotocel extractor								
	(A)	(i) only	(B) (i) and (ii) only								
	(C)	(ii) and (iii) only	(D) (iii) only								
	(E)	Answer not known									
131.		pose the correct statements stallizer	of the following about vaccum								
	(i) The effect of static head on the boiling point is not important.										
	(ii) Crystals tend to settle to the bottom of crystallizer where there may be little or no supersaturation										
	(iii)	Nucleation control is not good	in vacuum crystallizer.								
	(A)	(i) only	(B) (ii) only								
	(C)	(ii) and (iii) only	(D) (i) and (iii) only								
	(E)	Answer not known									

132.	The portion of water in the wet solid that cannot be removed by inlet air is called as:										
	(A)	Cri	tical m	oistur	e		(B)	Free moisture			
	(C)	Equ	uilibriu	ım mo	isture		(D)	Unbound moisture			
	(E)	Ans	swer no	ot kno	wn						
133.			he cori tion pr		atement	rega	rding	g agitated pulse column used			
	(i)	_		_	_			reciprocating pump			
	(ii)					-	_	g column			
	(iii)	Pul	sation	disper	ses the	liquic	d and	eliminates channeling			
	(A)	(i) c	only				(B)	(ii) only			
	(C)	(iii)	and (i	i) only			(D)	(i) and (iii) only			
	(E)	Answer not known									
134	Mat	ch th	e follo	wing fa	or the te	rms 1	ised i	in extraction :			
104.	Ma		ation	wing it		11115	Term				
	(a)	_		he ext	racted	1.	Extract				
	(b)		liquid			2.		ffinate			
	(8)		acted v				1001				
	(c)		ent ric	_		3.	Fee	ed			
	` '		dual li	_		4.	Sol	vent			
	` /	of so		•							
		(a)	(b)	(c)	(d)						
	(A)	1	$\stackrel{\cdot}{2}$	3	4						
		3	4	1	2						
	(C)	2	3	4	1						
	(D)	4	3	2	1						
	(E)	Ansv	ver no	t know	'n						

40

452-Chemical Technology/ Chemical Engineering

135.		ose the cess:	correct	m	atches	for	choic	e of	solvent	for	extraction		
		Charact	eristics				Value						
	(i)	selectiv	ity			-	grea	ater t	han one				
	(ii)	Distribu	ation coe	effic	ient	-	less	than	one				
	(iii)	Density	differer	nce		-	less	ser					
	(iv)	Viscosit pressur	•	apou	ar	-	low						
	(A)	(i) and	(iv)				(B)	(i) ar	nd (ii)				
	(C)	(ii) and	d (iv)				(D)	(iii) a	and (iv)				
	(E)	Answe	er not kn	.OW1	n								
136.		ch and I narily n			•				-		ss merge is verve.		
	(A)	Plait p	oint				(B)	Bino	dal point	t			
	(C)	Peak p	oint				(D)	Noda	al point				
	(E)	Answe	er not kn	.OW1	n								
137.		oose the o	correct r	nato	ches for	r ope	eratio	ns in	packed b	oed.	Absorption		
	(i)	Floodin	g	_	higher	gas	veloc	ity					
	(ii)	Loading	g	_	liquid	hold	l in co	lumn	decreas	e			
	(iii)	Channe	ely	_	high li	iquid	l rate						
	(iv)	Loading	g point	_	liquid	hold	lup st	arts t	o increas	se			
	(A)	(i) and	(ii)				(B)	(iii) a	and (iv)				
	(C)	(i) and	(iv)				(D)	(ii) a	nd (iv)				
	(E)	Answe	er not kn	.OW1	1								

	(A) (C) (E)	Raschig r Pallring Answer n		` /	Berl saddle Intolax saddle				
139.	A we	et solid is			5% moisture, on wet basis.				
	(A)	2		(B)	4				
	(C)	6		(D)	8				
	(E)	Answer n	ot known						
140.	Asse	rtion [A] :	A constant boiling azeotrope.	vapo	r liquid mixture is known as				
	Reas	on [R] :		ive o	components of mixtures and deviation is large it forms a cope.				
	(A)	[A] is true	e [R] is false						
	(B)	[A] is fals	e [R] is true						
	(C)	[A] is true	e and [R] is true						
	(D)	[A] is true	e and [R] is correct ex	xplaı	nation of [A]				
	(E)	Answer not known							

138. Intalox saddles are somewhat like:

141. Match the following for feed condition with q values. (moles of liquid flow entering stripping section that is due to introduction of each mole of feed):

Feed condition

Q value

(a) Cold feed

1. q = 0

(b) Feed at bubble point

2. 0 < q < 1

(c) Feed as partial vapour

3. q = 1

(d) Dew point

4. q > 1

(a) (b) (c) (d)

(A) 1 2 3 4

(B) 4 1 2 3

(C) 4 3 2 1

(D) 3 4 1 2

- (E) Answer not known
- 142. Which of the following statements are correct about distillation?
 - (i) It is a method of separating the components of solution.
 - (ii) The separation factor applied in distillation process is known as relative humidity.
 - (iii) Relative volatility is the separation factor used in distillation.

(A) (ii) only

(B) (iii) only

(C) (i) and (iii) only

(D) (i) and (ii) only

- 143. Which of the following statements are correct?
 - (i) The family of adiabatic saturation curves for air water system is called psychrometric chart.
 - (ii) The family of plot of absolute humidity of air water system versus temperature is also psychrometric chart.
 - (iii) The family of adiabatic saturation curves for benzene gas system is called as psychrometric chart.
 - (A) (i) and (iii)

(B) (ii) and (iii)

(C) (i), (ii) and (iii)

- (D) (i) and (ii)
- (E) Answer not known
- 144. [A]: The unsaturation of vapor invapor gas mixture depends on the partial pressure of vapor.
 - [R]: If the partial pressure of vapor is less than the equilibrium vapor pressure of liquid at same temperature then mixture is unsaturation.
 - (A) [A] is true, [R] is false
 - (B) [A] is false, [R] is true
 - (C) [A] is true, [R] is correct explanation of [A]
 - (D) [A] is true and [R] is not the correct explanation of [A]
 - (E) Answer not known

145.	Mat	ch co	rrectly	the qu	uantit	ies v	with corresponding units :			
		Qu	antity				Unit			
	(a)	Molar flex				1.	m			
	(b)	Diffu	asivity			2.	kgmol/m²h			
	(c)	Conc	centrat	ion		3.	m²/h			
	(d)	Distance				4.	kgmol/m³			
		(a)	(b)	(c)	(d)					
	(A)	1	2	3	4					
	(B)	2	3	4	1					
	(C)	4	1	2	3					
	(D)	3	4	2	1					
	(E)	Ans	swer no	t know	vn					
146.	Pro	ximat	te anal	ysis in	volves	s the	e determination of			
	(A)	Car	rbon, n	itroger	1					
	(B)		n, mois	_						
	(C) Sulphur, oxygen(D) H₂, N₂									
	(E)									
	(12)	1111,	3 W O1 110		, , 11					
147.		er, ca					77.5 kg of dry coal contains 22.5 kg dry coal contains equal amount of			
	(A)	27.	$27~\mathrm{kg}$				(B) 28.31 kg			
	(C)	29.	03 kg				(D) 30.09 kg			
			swer no	ot knov	wn					

- 148. Give examples of secondary liquid fuel.
 - (A) Synthetic petrol

(B) Producer gas

(C) Coal gas

- (D) Petroleum
- (E) Answer not known
- 149. If the mole of water is accounted in the calculation of composition of flue gas analysis is called _____
 - (A) Composition on dry basis
 - (B) Composition on wet and dry basis
 - (C) Composition on wet basis
 - (D) Composition on inert basis
 - (E) Answer not known
- 150. ———— is the calorific value of fuel which is determined in the absence of water vapour.
 - (A) Average Heating Value
- (B) High Heating Value
- (C) Net Calorific Value
- (D) Low Heating Value
- (E) Answer not known
- 151. A generalised equation for calculation of heat of formation at any temperature T in K is
 - (A) $\Delta H_f = \alpha \beta T + \gamma T^2$
- (B) $\Delta H_f = \alpha \beta T$
- (C) $\Delta H_f = \beta T \alpha \gamma T^2$
- (D) $\Delta H_f = \Delta H_f^{\circ} + \int_{298}^T \Delta c_{mp}^{\circ} dT$
- (E) Answer not known

152.	Ma	tch th	e follo	wing:		
	(a) Refuse				1.	Cinder
	(b)	Gase	eous fu	el	2.	No ash
	(c)	Solid	l fuel		3.	Latent Heat account for heat loss
	(d)	Stea	m boile	ers	4.	Blow-down heat loss
		(a)	(b)	(c)	(d)	
	(A)	2	1	4	3	
	(B)	1	3	4	2	
	(C)	1	2	3	4	
	(D)	4	2	3	1	
	(E)	Ansv	wer no	t knowi	n	
	give com (A)	es CO	2-11.4	$\%$, O_2 –4	4.2%,	flue gasses from a boiler house chimney $H_2 - 84.4\%$ (mole %). Assuming complete ratio in the fuel. (B) 3
	(C) (E)			ot know	770	(D) 7
	(E)	Alls	swer in	ot Know	V 11	
154.	mas NC	ss). It V at 2	s GCV 25°C (2	at 25° 98.15K	C (29 C).	in 87.1% C, 12.5% H ₂ , 0.4% Sulphur (by 98.15 K) is measured kJ/kg oil. Calculate
	Not	e : La	itent h	eat of F	12 O v	apour at 25° C is 2747.8 kJ.
	(A)	423	323.2 k	J/kg oil		(B) 40123.2 kJ/kg oil
	(C)	432	232.27	kJ/kg o	il	(D) 44.2320 kJ/kg oil
	(E)	Ans	swer n	ot know	vn	

155. In the Batch extractor. An aqueous solution of pyridine and water is to be extracted with chlorobenzene the feed contains 100 kg mixture solution, the quantity of solvent required is 179.76 kg. Calculate weight ratio of solvent to feed.
(A) 2.71212 (B) 3.1213
(C) 1.7976 (D) 5.7192

(E) Answer not known

156. Inert gases are commonly used in chemical process industries are

(A) H_2 , O_2

(B) NH_3 , H_{2S}

(C) CO_2 , CO

(D) Neon, Argon

(E) Answer not known

157. Choose the wrong answer.

- 1. For any unit process Input-Output = Accumulation.
- 2. For steady state Unit process Input-Output = 0.
- 3. The law of conservation of mass state that the total mass of various component involved in a Unit process remains constant.
- 4. The law of conservation of mass is not on the basis of material balance calculations.

(A) 1, 2, 3, 4 are wrong

(B) 1, 2, 3, only wrong

(C) 4 only wrong

(D) 3 only wrong

158. Choose the wrong answer:

The different types of graphs generally used

- 1. Ordinary graph
- 2. Semi-log graph
- 3. Log-Log graph
- 4. Rectangle graph
- (A) 1, 2 only wrong

(B) 2, 3 only wrong

(C) 3 only wrong

- (D) 4 only wrong
- (E) Answer not known
- 159. The percentage yield can be expressed as considered the general chemical reaction.

$$A \rightleftharpoons P$$

$$A \rightleftharpoons R$$

where P – Desired product

R – Undesired product

A – Limiting reactant

- (A) % yield = $\frac{\text{Moles of A reacted to produce P}}{\text{Moles of A totally reacted}} \times 100$
- (B) % yield = $\frac{\text{Moles of P reacted to produce A}}{\text{Moles of A + moles of P}} \times 100$

(C) % yield =
$$\frac{\text{Moles of A} \times \text{P}}{\text{Moles of A} + \text{P}} \times 100$$

- (D) % yield = [moles of A + moles of P/moles of $A \times P$] × 100
- (E) Answer not known

- 160. Molecular wt of SO₃ is 80.06 using molar quantities 100 kg of SO₃
 ————— kmol.
 - (A) 1.391 kmol

(B) 1.2491 kmol

(C) 2.125 kmol

- (D) 3.119 kmol
- (E) Answer not known
- 161. Pure water and alcohol are mixed to get a 60% (weight) alcohol solution. The densities (kg/m³) of water, alcohol and solution may be taken to be 998, 798 and 895 respectively at 293 K. Calculate volume percent of ethanol in the solution at 293 K.
 - (A) 79%

(B) 67.3%

(C) 59.2%

- (D) 48.521%
- (E) Answer not known
- 162. Volume fraction of the component is the ratio of its

 V_A – Pure component volume of A.

V – Volume of the solution.

(A) V_A/V

(B) V_A

(C) $1 - V/V_A$

- (D) $1 + V_{V_A}$
- (E) Answer not known

2-Chemical Technology/										
m^2										
m^2										
ed for evaporation of 2816283W.										
than one										
$\times 10^3 \text{ mol}$										
$\times 10^3 \text{ mol}$										
How many moles of sodium sulphate will contain 100 kg of sodium?										
0 bar										
25 bar										
The value of 1 Std atmosphere (atm) =										
250 kg wet ammonia sulphate containing 50 kg moisture is sent to dryer in order to remove 90% of the moisture in the feed. Calculate the weight fraction of the water.										
_										

- 168. Which type of battles commonly used in the fabrication of shell and tube heat exchanger?
 - (A) Disc battle

(B) Segmental battle

(C) Ring type battle

- (D) Orifice type battle
- (E) Answer not known
- 169. Match the following type Classification of evaporators
 - (a) Power plant evaporator
 - (b) Chemical evaporator
 - (c) Single effect evaporator
 - (d) Multiple effect evaporators
- 1. Vertical tube
- 2. Batch evaporators
- 3. Forward feed
- evaporators 4. Process evaporators
- (a) (b) (c) (d)
- (A) 1 3 2 4
- (B) 4 2 3 1
- (C) 4 1 2 3
- (D) 3 1 2 4
- (E) Answer not known
- 170. The net rate of Radiant energy flow from the gray body to the black surrounding is given by the expression is
 - (A) $Q = MCP \Delta T$

- (B) $E = \sigma T4$
- (C) $Q/A = e. \sigma (T_1^4 T_2^4)$
- (D) $Q = UA \Delta T$
- (E) Answer not known

- 171. ______ is the radiant energy emitted from a body per unit area per unit time per unit wave length about the wavelength λ .
 - (A) Kirchhoff's law
 - (B) Monochromatic emissive power
 - (C) Total emissive power
 - (D) Stephan Boltzmann law
 - (E) Answer not known
- 172. Stefan-Boltzmann's law expressed as

(A)
$$E_b = \sigma T^4$$

(B)
$$E_b = T^4$$

(C)
$$E = e \cdot E_b$$

(D)
$$E = e \cdot E_b T^4$$

- (E) Answer not known
- 173. On which factor does emissive power of body depend?
 - (A) Wave length only
 - (B) Temperature only
 - (C) Physical Nature only
 - (D) Wavelength, Temperature, Physical Nature
 - (E) Answer not known
- 174. The rate of equation for convective heat transfer is prescribed by Newton's law of cooling expressed as

(A)
$$Q = Mcp(t_s - t_f)$$

(B)
$$Q = mcp\Delta T$$

(C)
$$Q = hA(t_s - t_f)$$

(D)
$$\lambda_m T = \text{constant}$$

175. Calculate the interchange factor of radiant heat exchange between two parallel oxidised iron plates having emissivities of the plates are $e_1 = e_2 = 0.736$.

(A) 0.999

(B) 1.217

(C) 0.5823

(D) 0.7917

(E) Answer not known

176. Calculate the total heat loss by convection and radiation per 1 meter length of the pipe has $h_c = 8.34$ w/m².c, $A = 0.157 \, m^2$, e = 0.9, $\sigma = 5.67 \times 10^{-8}$, $\Delta T = 125 K$.

(A) 202 w/m

(B) 301 w/m

(C) 370 w/m

(D) 344.7 w/m

(E) Answer not known

177. Match the following:

1. Nusselt number - $\beta_g \cdot \Delta T \cdot D^3 P^2 / \mu^2$

2. Reynolds number - hD/K

3. Prandle number $-\frac{Dv\rho}{\mu}$

4. Grashot number – $CP\mu/K$

(A) 2, 4, 3, 1

(B) 4, 2, 1, 3

(C) 2, 3, 4, 1

(D) 1, 2, 4, 3

- 178. $Q_A = 400 \text{ w/m}^2$, $\Delta T = 400 \text{ K}$, K for asbestos = 0.11 W/mK, Area of Heat transfer = 1 m², find out thickness of insulation.
 - (A) 200 mm

(B) 150 mm

(C) 98 mm

- (D) 140 mm
- (E) Answer not known
- 179. Heat transfer by convection occurs as a result of the movement of the fluid on a macroscopic scale in the form of
 - (A) Concentration difference
- (B) Circulating current
- (C) Pressure difference
- (D) Volume difference
- (E) Answer not known
- 180. Log mean temperature difference is for co-current flow heat exchanger is
 - (A) LMTD = $\Delta T_1 \Delta T_2 / \ln \left(\frac{\Delta T_1}{\Delta T_2} \right)$
 - (B) LMTD = $\Delta T_2 \Delta T_1 / \ln \left(\frac{\Delta T_2}{\Delta T_1} \right)$
 - (C) LMTD = $Q_{U_A\Delta T}$
 - (D) LMTD = $U_A \Delta T lm$
 - (E) Answer not known

181. Flow in non circular cross section, the equivalent diameter, De defined mathematically as

(A)
$$D_e = \frac{\pi}{4} D^2$$

(B)
$$D_e = \pi D$$

(C)
$$D_e = 4 \times r_H$$

(D)
$$D_e = \left(\frac{\pi}{4}D^2\right) - \left(\frac{\pi}{4}Di^2\right)$$

- (E) Answer not known
- 182. Sider-Tate equation for the calculation of heat transfer coefficient for laminar flow of fluids in horizontal tubes (or) pipes is

(A)
$$N_{N4} = hL/K$$

(B)
$$N_{pr} = \frac{C_p \mu}{K}$$

(C)
$$N_{\text{Re}} = \frac{Dve}{\mu}$$

(D)
$$N_{N4} = 1.86 [(N_{Re})(N_{pr})(D_L)]^{1/3} [H_{\mu w}]^{0.14}$$

- (E) Answer not known
- 183. ______ is the type boiling in which the heating surface is surrounded by submerged in a relatively large body of the liquid which is agitated by the motion of the bubbles and natural convection currents
 - (A) Bulk boiling

(B) Local boiling

(C) Pool boiling

- (D) Subcooled boiling
- (E) Answer not known

184.						Heat 200k, Q =		hanger < 10 ³ W .	for	the	given	
	(A)	$2\mathrm{m}$	2			(B) 4	m^2				
	, ,	6 m				`	Ď) 8					
	(E)		swer no	ot knov	wn	(D) 0	111				
185.	Cho	ose tł	ne righ	t ansv	ver:							
	(a)	Stei	fan-Bo	ltzmaı	n Law		1.	$\lambda mT =$	const	ant		
	(b)	Wie	en's La	w			2.	$E = \alpha$				
	(c)	Kiro	chhoff	s law			3.	$Q \alpha T^4$				
	(d) Convection thermal resistance					sistance	4.	$\frac{1}{h_A}$				
		(a)	(b)	(c)	(d)							
	(A)		2									
	(B)		3	2	1							
	(C)	3		1	4							
	(D)	2	3	4	1							
	(E) Answer not known											
186.								the react		lume	of feed	
	· ·	_					ted by the reactor.					
	(A)		in one			`		min two				
	(C)		in two			((D) 2 min one reactor					
	(E)	Answer not known										

187. _____ is the ratio of volumetric feed rate to the reactor volume.

(A) Space-time

(B) Mean residence time

(C) Space velocity

- (D) Linear velocity
- (E) Answer not known

188. A gas-phase reaction, $2A \rightarrow R$ is investigated on a CSTR, then the stoichiometric co-efficients of the chemical reaction are

$$S_A$$
 S_R Δ

- (A) +2 -1 +1
- (B) -2 -1 -1
- (C) +2 +1 +1
- (D) -2 +1 -1
- (E) Answer not known

- 189. Assess the true or false statements of the following using the codes:
 - (i) A plug flow reactor with the same volume as a continuously stirred Tank Reactor provides higher conversion.
 - (ii) A plug flow reactor represents best reactor configuration.
 - (iii) Different performance of the reactor is based on the concentration profile of the reactants.
 - (iv) In designing of a single continuously stirred Tank Reactor, the reaction rate r, varies with Z, the we can plot $\frac{r_0}{r}$ vs Z.
 - (A) (i)-True; (ii)-False; (iii)-True; (iv)-False
 - (B) (i)-False; (ii)-True; (iii)-False; (iv)-True
 - (C) (i)-False; (ii)-False; (iii)-True; (iv)-False
 - (D) (i)-True; (ii)-True; (iii)-True; (iv)-True
 - (E) Answer not known
- 190. Choose the wrong statement from the following with respect to plugflow reactor.
 - (A) The reactor is operated at steady state
 - (B) The fluid moves in a continuous velocity profile
 - (C) No spatial variations in species concentrations
 - (D) The fluid moves in a flat velocity profile
 - (E) Answer not known

- 191. Choose the correct procedure for designing plug-flow reactor with multiple chemical reactions.
 - (i) Identify all reactions takes place in a reactor.
 - (ii) Define the stoichiometric co-efficients of each species in each reaction.
 - (iii) Determine the number of independent chemical reaction.
 - (iv) Specify the inlet conditions.
 - (A) (i), (ii), (iii)

(B) (ii), (iii), (iv)

(C) (iii), (iv), (i)

- (D) (i), (ii), (iii), (iv)
- (E) Answer not known
- 192. Individual particles are blown act of the fluidised bed when the gas velocity exceeds
 - (A) Minimum fluidizing velocity
 - (B) Linear velocity
 - (C) Terminal velocity
 - (D) Angular velocity
 - (E) Answer not known
- 193. Choose the correct option for the important characteristics of steadystate flow reactor.
 - (A) Composition changes with time
 - (B) Composition at any point is unchanged with time
 - (C) Volume of the fluid and composition is unchanged with time
 - (D) Volume of the fluid is constant but composition changes
 - (E) Answer not known

194.		The ratio of volume of mixed reactor to that of volume of plug flow reactor with reaction order, for a particular conversion.									
	(A)	Increases									
	(B)	Decreases									
	(C)	Increases and then decreases									
	(D)	Decreases and then increases									
	(E)	E) Answer not known									
195.	Select a condition that is not assumed in K-L model for Bubbling Fluidised Bed (BFB)										
	(A)	Bubbles are not spherical									
	(B)	Gas-Solid velocity is constant									
	(C)	Bubble drags up a wake of solids									
	(D)	Ignore the upflow of gas through the cloud									
	(E)	Answer not known									
196.	The o	chemical reaction takes place o	f atleast two phases is known as								
	(A)	Homogeneous reaction	(B) Catalytic reaction								
	(C)	Heterogeneous reaction	(D) Acid base reaction								
	(E)	Answer not known									
197.		A single stoichiometric equation, and single rate equation are choosen to represent the progress of the reaction is									
	(A)	Single reaction	(B) Multiple reaction								
	(C)	Elementary reaction	(D) Non elementary reaction								
	(E)	Answer not known									

198. Milk is pasteurized if it is heated to 63°C for 30 min. But if it is heated to 74°C it only needs 15s for the same result. Find the activation energy of this sterilization process.

(A) E = 422000 J/mol

(B) E = 451000 J/mol

(C) E = 402000 J/mol

(D) E = 282000 J/mol

(E) Answer not known

199. In chemical reaction, the intermediate is formed in the first reaction and then disappears as it reacts further to give the product is called

(A) Chain reaction

(B) Non chain reaction

(C) Forward reaction

(D) Reverse reaction

(E) Answer not known

200. The rate of reaction, based on unit mass of solid in fluid-solid systems

$$r_c^1 = \frac{1}{W} \frac{dNi}{dt} = \frac{\text{moles } i \text{ formed}}{\text{(?) time}}$$

where W = ?

W is called as

(A) mass of solid

(B) volume of solid

(C) surface

(D) volume of reactor